References
Citations and related literature
Thereotical and related literature
Garcia-Garcia, J. et al. Networks of ProteinProtein Interactions: From Uncertainty to Molecular Details. Mol Inform 31, 342-362, doi:10.1002/minf.201200005 (2012).
Segura, J., Marin-Lopez, M. A., Jones, P. F., Oliva, B. & Fernandez-Fuentes, N. VORFFIP-driven dock: V-D2OCK, a fast and accurate protein docking strategy. PLoS One 10, e0118107, doi:10.1371/journal.pone.0118107 (2015).
Lensink, M. F. et al. Prediction of homo- and hetero-protein complexes by protein docking and template-based modeling: a CASP-CAPRI experiment. Proteins, doi:10.1002/prot.25007 (2016).
Tuncbag, N., Gursoy, A., Nussinov, R. & Keskin, O. Predicting protein-protein interactions on a proteome scale by matching evolutionary and structural similarities at interfaces using PRISM. Nat Protoc 6, 1341-1354, doi:nprot.2011.367 [pii]10.1038/nprot.2011.367 (2011).
Stein, A., Panjkovich, A. & Aloy, P. 3did Update: domain-domain and peptide-mediated interactions of known 3D structure. Nucleic Acids Res 37, D300-304,doi:gkn69010.1093/nar/gkn690 (2009).
Saltzberg, D. et al. Modeling Biological Complexes Using Integrative Modeling Platform. Methods Mol Biol 2022, 353-377, doi:10.1007/978-1-4939-9608-7_15 (2019).
Rout, M. P. & Sali, A. Principles for Integrative Structural Biology Studies. Cell 177, 1384-1403, doi:10.1016/j.cell.2019.05.016 (2019).
Russell, R. B. et al. A structural perspective on protein-protein interactions. Curr Opin Struct Biol 14, 313-324, doi:10.1016/j.sbi.2004.04.006S0959440X04000739 (2004).
Lasker, K., Topf, M., Sali, A. & Wolfson, H. J. Inferential optimization for simultaneous fitting of multiple components into a CryoEM map of their assembly. J Mol Biol 388, 180-194, doi:10.1016/j.jmb.2009.02.031 (2009).
Topf, M. et al. Protein structure fitting and refinement guided by cryo-EM density. Structure 16, 295-307, doi:10.1016/j.str.2007.11.016 (2008)
Tjioe, E., Lasker, K., Webb, B., Wolfson, H. J. & Sali, A. MultiFit: a web server for fitting multiple protein structures into their electron microscopy density map. Nucleic Acids Res 39, W167-170, doi:10.1093/nar/gkr490 (2011).
Meng, X. & Wolfe, S. A. Identifying DNA sequences recognized by a transcription factor using a bacterial one-hybrid system. Nat Protoc 1, 30-45, doi:10.1038/nprot.2006.6 (2006).
Deplancke, B., Dupuy, D., Vidal, M. & Walhout, A. J. A gateway-compatible yeast one-hybrid system. Genome Res 14, 2093-2101, doi:10.1101/gr.2445504 (2004).
Ambrosini, G., Dreos, R., Kumar, S. & Bucher, P. The ChIP-Seq tools and web server: a resource for analyzing ChIP-seq and other types of genomic data. BMC Genomics 17, 938, doi:10.1186/s12864-016-3288-8 (2016).
Hallikas, O. & Taipale, J. High-throughput assay for determining specificity and affinity of protein-DNA binding interactions. Nat Protoc 1, 215-222, doi:10.1038/nprot.2006.33 (2006).
Roulet, E. et al. High-throughput SELEX SAGE method for quantitative modeling of transcription-factor binding sites. Nat Biotechnol 20, 831-835, doi:10.1038/nbt718 (2002).
Isakova, A. et al. SMiLE-seq identifies binding motifs of single and dimeric transcription factors. Nat Methods 14, 316-322, doi:10.1038/nmeth.4143 (2017).
Berger, M. F. & Bulyk, M. L. Protein binding microarrays (PBMs) for rapid, high- throughput characterization of the sequence specificities of DNA binding proteins. Methods Mol Biol 338, 245-260, doi:10.1385/1-59745-097-9:245 (2006).
Badis, G. et al. Diversity and complexity in DNA recognition by transcription factors. Science 324, 1720-1723, doi:10.1126/science.1162327 (2009).
Hume, M. A., Barrera, L. A., Gisselbrecht, S. S. & Bulyk, M. L. UniPROBE, update 2015: new tools and content for the online database of protein-binding microarray data on protein-DNA interactions. Nucleic Acids Res 43, D117-122, doi:10.1093/nar/gku1045 (2015).
Patwardhan, R. P. et al. High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis. Nat Biotechnol 27, 1173-1175, doi:10.1038/nbt.1589 (2009).
Melnikov, A. et al. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat Biotechnol 30, 271-277, doi:10.1038/nbt.2137 (2012).
O'Malley, R. C. et al. Cistrome and Epicistrome Features Shape the Regulatory DNA Landscape. Cell 165, 1280-1292, doi:10.1016/j.cell.2016.04.038 (2016).
Han, Y., Yan, C., Fishbain, S., Ivanov, I. & He, Y. Structural visualization of RNA polymerase III transcription machineries. Cell Discov 4, 40, doi:10.1038/s41421- 018-0044-z (2018).
Panne, D., Maniatis, T. & Harrison, S. C. An atomic model of the interferon-beta enhanceosome. Cell 129, 1111-1123, doi:10.1016/j.cell.2007.05.019 (2007).
Li, S., Olson, W. K. & Lu, X. J. Web 3DNA 2.0 for the analysis, visualization, and modeling of 3D nucleic acid structures. Nucleic Acids Res 47, W26-W34, doi:10.1093/nar/gkz394 (2019).
Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5, 725-738, doi:10.1038/nprot.2010.5 (2010).
Biopython citation
Cock PA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B and de Hoon MJL (2009) Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics, 25, 1422-1423
Chapman BA and Chang JT (2000). Biopython: Python tools for computational biology. ACM SIGBIO Newsletter, 20, 15-19
Hamelryck T and Manderick B (2003) PDB file parser and structure class implemented in Python. Bioinformatics, 22, 2308-2310
de Hoon MJ, Imoto S, Nolan J and Miyano S (2004) Open source clustering software. Bioinformatics, 20, 1454-1453
Pritchard L, White JA, Birch PR and Toth IK (2006) GenomeDiagram: a Python package for the visualization of large-scale genomic data. Bioinformatics, 22, 616-617
Cock PJ, Fields CJ, Goto N, Heuer ML and Rice PM (2009) The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res., 38, 1767-1771
Talevich E, Invergo BM, Cock PJ and Chapman BA (2012) Bio.Phylo: a unified toolkit for processing, analyzing and visualizing phylogenetic trees in Biopython. BMC Bioinformatics, 13, 209
Modeller citation
B. Webb, A. Sali. Comparative Protein Structure Modeling Using Modeller. Current Protocols in Bioinformatics 54, John Wiley & Sons, Inc., 5.6.1-5.6.37, 2016.
M.A. Marti-Renom, A. Stuart, A. Fiser, R. Sánchez, F. Melo, A. Sali. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 29, 291-325, 2000.
A. Sali & T.L. Blundell. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779-815, 1993.
A. Fiser, R.K. Do, & A. Sali. Modeling of loops in protein structures, Protein Science 9. 1753-1773, 2000.
Last updated
Was this helpful?