References

Citations and related literature

  1. Garcia-Garcia, J. et al. Networks of ProteinProtein Interactions: From Uncertainty to Molecular Detailsarrow-up-right. Mol Inform 31, 342-362, doi:10.1002/minf.201200005 (2012).

  2. Segura, J., Marin-Lopez, M. A., Jones, P. F., Oliva, B. & Fernandez-Fuentes, N. VORFFIP-driven dock: V-D2OCK, a fast and accurate protein docking strategy.arrow-up-right PLoS One 10, e0118107, doi:10.1371/journal.pone.0118107 (2015).

  3. Tuncbag, N., Gursoy, A., Nussinov, R. & Keskin, O. Predicting protein-protein interactions on a proteome scale by matching evolutionary and structural similarities at interfaces using PRISM. arrow-up-rightNat Protoc 6, 1341-1354, doi:nprot.2011.367 [pii]10.1038/nprot.2011.367 (2011).

  4. Stein, A., Panjkovich, A. & Aloy, P. 3did Update: domain-domain and peptide-mediated interactions of known 3D structure.arrow-up-right Nucleic Acids Res 37, D300-304,doi:gkn69010.1093/nar/gkn690 (2009).

  5. Saltzberg, D. et al. Modeling Biological Complexes Using Integrative Modeling Platform. arrow-up-rightMethods Mol Biol 2022, 353-377, doi:10.1007/978-1-4939-9608-7_15 (2019).

  6. Rout, M. P. & Sali, A. Principles for Integrative Structural Biology Studies.arrow-up-right Cell 177, 1384-1403, doi:10.1016/j.cell.2019.05.016 (2019).

  7. Russell, R. B. et al. A structural perspective on protein-protein interactions. arrow-up-rightCurr Opin Struct Biol 14, 313-324, doi:10.1016/j.sbi.2004.04.006S0959440X04000739 (2004).

  8. Lasker, K., Topf, M., Sali, A. & Wolfson, H. J. Inferential optimization for simultaneous fitting of multiple components into a CryoEM map of their assembly.arrow-up-right J Mol Biol 388, 180-194, doi:10.1016/j.jmb.2009.02.031 (2009).

  9. Topf, M. et al. Protein structure fitting and refinement guided by cryo-EM density. arrow-up-rightStructure 16, 295-307, doi:10.1016/j.str.2007.11.016 (2008)

  10. Tjioe, E., Lasker, K., Webb, B., Wolfson, H. J. & Sali, A. MultiFit: a web server for fitting multiple protein structures into their electron microscopy density map.arrow-up-right Nucleic Acids Res 39, W167-170, doi:10.1093/nar/gkr490 (2011).

  11. Meng, X. & Wolfe, S. A. Identifying DNA sequences recognized by a transcription factor using a bacterial one-hybrid systemarrow-up-right. Nat Protoc 1, 30-45, doi:10.1038/nprot.2006.6 (2006).

  12. Deplancke, B., Dupuy, D., Vidal, M. & Walhout, A. J. A gateway-compatible yeast one-hybrid system. arrow-up-rightGenome Res 14, 2093-2101, doi:10.1101/gr.2445504 (2004).

  13. Ambrosini, G., Dreos, R., Kumar, S. & Bucher, P. The ChIP-Seq tools and web server: a resource for analyzing ChIP-seq and other types of genomic data.arrow-up-right BMC Genomics 17, 938, doi:10.1186/s12864-016-3288-8 (2016).

  14. Hallikas, O. & Taipale, J. High-throughput assay for determining specificity and affinity of protein-DNA binding interactionsarrow-up-right. Nat Protoc 1, 215-222, doi:10.1038/nprot.2006.33 (2006).

  15. Isakova, A. et al. SMiLE-seq identifies binding motifs of single and dimeric transcription factors.arrow-up-right Nat Methods 14, 316-322, doi:10.1038/nmeth.4143 (2017).

  16. Badis, G. et al. Diversity and complexity in DNA recognition by transcription factors. arrow-up-rightScience 324, 1720-1723, doi:10.1126/science.1162327 (2009).

  17. Hume, M. A., Barrera, L. A., Gisselbrecht, S. S. & Bulyk, M. L. UniPROBE, update 2015: new tools and content for the online database of protein-binding microarray data on protein-DNA interactions.arrow-up-right Nucleic Acids Res 43, D117-122, doi:10.1093/nar/gku1045 (2015).

  18. Patwardhan, R. P. et al. High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis. Nat Biotechnol 27, 1173-1175, doi:10.1038/nbt.1589 (2009).

  19. O'Malley, R. C. et al. Cistrome and Epicistrome Features Shape the Regulatory DNA Landscape. arrow-up-rightCell 165, 1280-1292, doi:10.1016/j.cell.2016.04.038 (2016).

  20. Han, Y., Yan, C., Fishbain, S., Ivanov, I. & He, Y. Structural visualization of RNA polymerase III transcription machineries.arrow-up-right Cell Discov 4, 40, doi:10.1038/s41421- 018-0044-z (2018).

  21. Panne, D., Maniatis, T. & Harrison, S. C. An atomic model of the interferon-beta enhanceosome.arrow-up-right Cell 129, 1111-1123, doi:10.1016/j.cell.2007.05.019 (2007).

  22. Li, S., Olson, W. K. & Lu, X. J. Web 3DNA 2.0 for the analysis, visualization, and modeling of 3D nucleic acid structures.arrow-up-right Nucleic Acids Res 47, W26-W34, doi:10.1093/nar/gkz394 (2019).

  23. Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction.arrow-up-right Nat Protoc 5, 725-738, doi:10.1038/nprot.2010.5 (2010).

Biopython citation

  1. Cock PA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B and de Hoon MJL (2009) Biopython: freely available Python tools for computational molecular biology and bioinformatics.arrow-up-right Bioinformatics, 25, 1422-1423

  2. Chapman BA and Chang JT (2000). Biopython: Python tools for computational biology.arrow-up-right ACM SIGBIO Newsletter, 20, 15-19

  3. de Hoon MJ, Imoto S, Nolan J and Miyano S (2004) Open source clustering software.arrow-up-right Bioinformatics, 20, 1454-1453

  4. Pritchard L, White JA, Birch PR and Toth IK (2006) GenomeDiagram: a Python package for the visualization of large-scale genomic data.arrow-up-right Bioinformatics, 22, 616-617

  5. Cock PJ, Fields CJ, Goto N, Heuer ML and Rice PM (2009) The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants.arrow-up-right Nucleic Acids Res., 38, 1767-1771

  6. Talevich E, Invergo BM, Cock PJ and Chapman BA (2012) Bio.Phylo: a unified toolkit for processing, analyzing and visualizing phylogenetic trees in Biopython.arrow-up-right BMC Bioinformatics, 13, 209

Modeller citation

  1. B. Webb, A. Sali. Comparative Protein Structure Modeling Using Modeller.arrow-up-right Current Protocols in Bioinformatics 54, John Wiley & Sons, Inc., 5.6.1-5.6.37, 2016.

  2. M.A. Marti-Renom, A. Stuart, A. Fiser, R. Sánchez, F. Melo, A. Sali. Comparative protein structure modeling of genes and genomes. arrow-up-rightAnnu. Rev. Biophys. Biomol. Struct. 29, 291-325, 2000.

  3. A. Sali & T.L. Blundell. Comparative protein modelling by satisfaction of spatial restraintsarrow-up-right. J. Mol. Biol. 234, 779-815, 1993.

  4. A. Fiser, R.K. Do, & A. Sali. Modeling of loops in protein structuresarrow-up-right, Protein Science 9. 1753-1773, 2000.

Last updated